A Tale of Two “Forests”: Random Forest Machine Learning Aids Tropical Forest Carbon Mapping
نویسندگان
چکیده
Accurate and spatially-explicit maps of tropical forest carbon stocks are needed to implement carbon offset mechanisms such as REDD+ (Reduced Deforestation and Degradation Plus). The Random Forest machine learning algorithm may aid carbon mapping applications using remotely-sensed data. However, Random Forest has never been compared to traditional and potentially more reliable techniques such as regionally stratified sampling and upscaling, and it has rarely been employed with spatial data. Here, we evaluated the performance of Random Forest in upscaling airborne LiDAR (Light Detection and Ranging)-based carbon estimates compared to the stratification approach over a 16-million hectare focal area of the Western Amazon. We considered two runs of Random Forest, both with and without spatial contextual modeling by including--in the latter case--x, and y position directly in the model. In each case, we set aside 8 million hectares (i.e., half of the focal area) for validation; this rigorous test of Random Forest went above and beyond the internal validation normally compiled by the algorithm (i.e., called "out-of-bag"), which proved insufficient for this spatial application. In this heterogeneous region of Northern Peru, the model with spatial context was the best preforming run of Random Forest, and explained 59% of LiDAR-based carbon estimates within the validation area, compared to 37% for stratification or 43% by Random Forest without spatial context. With the 60% improvement in explained variation, RMSE against validation LiDAR samples improved from 33 to 26 Mg C ha(-1) when using Random Forest with spatial context. Our results suggest that spatial context should be considered when using Random Forest, and that doing so may result in substantially improved carbon stock modeling for purposes of climate change mitigation.
منابع مشابه
Dust source mapping using satellite imagery and machine learning models
Predicting dust sources area and determining the affecting factors is necessary in order to prioritize management and practice deal with desertification due to wind erosion in arid areas. Therefore, this study aimed to evaluate the application of three machine learning models (including generalized linear model, artificial neural network, random forest) to predict the vulnerability of dust cent...
متن کاملEconomic Evaluation of Carbon Sequestration in Zagros Oak Forests (Case Study: The Pahnus Forest habitat, Chaharmahal and Bakhtiari Province)
Examining the economic value of carbon sequestration in forests is essential, given the risk of global climate change, which has posed a profound challenge to societies internationally. The present study investigates the amount of carbon sequestration and its economic value in the oak forests (Quercus brantii L.) of Pahnus forest habitat with an area of 990 ha, located in Chaharmahal va Bakhtia...
متن کاملA Comparative Study of SVM and RF Methods for Classification of Alteration Zones Using Remotely Sensed Data
Identification and mapping of the significant alterations are the main objectives of the exploration geochemical surveys. The field study is time-consuming and costly to produce the classified maps. Therefore, the processing of remotely sensed data, which provide timely and multi-band (multi-layer) data, can be substituted for the field study. In this study, the ASTER imagery is used for altera...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملMapping Above-Ground Biomass in a Tropical Forest in Cambodia Using Canopy Textures Derived from Google Earth
This study develops a modelling framework for utilizing very high-resolution (VHR) aerial imagery for monitoring stocks of above-ground biomass (AGB) in a tropical forest in Southeast Asia. Three different texture-based methods (grey level co-occurrence metric (GLCM), Gabor wavelets and Fourier-based textural ordination (FOTO)) were used in conjunction with two different machine learning (ML)-b...
متن کامل